Friday, October 30, 2009

罗伯特议事规则及相关链接

中文维基介绍:《罗伯特议事规则》(英语Robert's Rules of Order)是美国将领亨利·M·罗伯特1876年初版的小册子Pocket Manual of Rules of Order for Deliberative Assemblies的简称,其目的是以参考美国众议院的议事规则,来规范民间团体。目前的版本在2000年出版。

英文维基介绍:Robert's Rules of Order is the informal short title of a book containing rules of order intended to be adopted for use by a deliberative assembly.

官方网站:http://www.robertsrules.com/

罗伯特议事规则在中国进展
1.萝卜白菜规则在南塘
http://www.1bao.org/?cat=22
http://www.1bao.org/?p=742

2.公民如何开会:罗伯特议事规则/ 翟明磊
上篇http://www.my1510.cn/article.php?id=f5d7097e181e4447
下篇http://www.my1510.cn/article.php?id=1a8a73ff456ff55c

3.【冰点特稿】:企业家们的公共生活
http://www.cyol.net/zqb/content/2009-10/28/content_2907436.htm

4.上贴涉及的阿拉善SEE生态协会网官方网址
http://www.see.org.cn/

5.豆瓣罗伯特议事规则小组
http://www.douban.com/group/40031/

6.第10版黑皮本介绍(据说比旧版改进很多)
http://www.douban.com/subject/2382433/
在线连载阅读
http://book.ce.cn/read/culture/lbtysgz/

7.第10版译者袁天鹏blog
http://hi.baidu.com/rrnr


8.其它相关介绍及下载
pdf中英文旧版http://www.18dao.com/%E7%BD%97%E4%BC%AF%E7%89%B9%E8%AE%AE%E4%BA%8B%E8%A7%84%E5%88%99

相关参考
http://delicious.com/hairuo/citizen

Thursday, October 01, 2009

误诊率和漏诊率


6月份看了这本书,第十一章提到一个例子:

“假设某种疾病有5%的误诊率(即100个人有5个正常人被诊断有病),不存在漏诊的情况,也就是说,患者结果一定是阳性。

随机检测一群人之后,发现有一个人的结果呈现阳性,那么这个人患病的概率有多少?

大部分医生只考虑检测的准确率为95%,而回答95%。正确的回答取决于普通人患病的比例,如果此种疾病的患病率为每1000个人有1个。那么随机抽查1000个人,预料将是1个患者,考虑到5%的误诊率,大约有50个左右的被误诊患者。

所以,如果某人检测结果呈现阳性,那么他的患病概率其实接近1/51=2%。

Nassim Nicholas Taleb于是在此书中说,不妨想想,这一辈子你曾有多少次被告知染上某种疾病,需要接受某种药物治疗且忍受可怕的副作用,而实际上你真的罹患那种疾病的概率只有2%!”

看起来好像很有道理,但问题是,1000:1的患病概率,乃是例行参加体检者而非就医者的随机抽取检结果。如果是针对感到身体不舒服的就医者的检测,那么患病概率恐怕就要递增很多了,比如,假设每10个感到身体不舒服而怀疑自己得了某种疾病,并且去就医的被检测者中,平均有1个是患者(更不用说在中国,很多人不到万不得已不去医院),也就是假设就医者中的患病率为1:10,那么1000个人大概有100个患者,而被误诊的正常人有50个(因为误诊率5%),那么,如果你是就医队伍中的一员而且被检测呈阳性,患病的概率显然是恐怖的2/3,而非2%了。

暑假曾和wy讨论过这个问题,他说,上面的假设0%的漏诊率(如果是患者,那么结果一定呈阳性)在现实生活中,某些疾病的检测是不可能达到的。然后列举了某种肝功能检查,漏诊率很高,所以每年检测一次仍然还要很担心自己会不会漏诊。

于是修改上面的模型,考虑漏诊率而非误诊率的问题,假设普通人患病率仍然为1:1000,误诊率为0,而漏诊率假设为80%,那么,10000个人中,有10个患者,而报告结果却只有2个患者,所以,如果你只是做体检,当你拿到阴性检测结果时,按照Nassim Nicholas Taleb的说法,你患病的可能性其实也就只有8:(10000-10),接近0.08%。

同样,如果是就医者,那么患病率应该会很高,假设为1:10,误诊率0%和漏诊率80%仍然不变,也就是说,100个就医者中,有10个患者,而报告平均结果只有2个,那么,拿到阴性检测结果的时候,你患病的可能性是8:90,接近9%,相比那个恐怖的80%漏诊率,结果看起来还是很低的。

现在开始同时考虑误诊率和漏诊率,假设体检者和就医者患病几率仍分别为1:1000和1:10,误诊率和漏诊率分别为5%和80%。

那么,10000个体检者中,有10个患者,有8个被漏诊,所以有2个被确诊,但同时有500个被误诊,即总共有502个被检测为患者,如果你拿到阳性报告,那么你患病的概率为2/502约等于0.4%,相比相同误诊率而漏诊率为0的更低,这是显然的,因为还有漏网之鱼呢,所以你患病的可能性更低些。阴性报告就更低了,因为你患病的概率为8/(10000-502).

同样地,考虑就医者的情况,每100个就医者中,有10个患者,漏诊8个,有2个患者被确诊,和5个患者被误诊,所以拿到阳性报告的患病概率是2/5=40%,有点恐怖,但如果没有误诊,那就是100%了,所以应该庆幸的。反之,拿到阴性报告的患病概率是8/(100-7),约为8.6%,同样的道理比前面更低些。